Théveninova věta

Théveninova věta

Jakýkoliv aktivní lineární jednobran (tj. obvod složený z lineárních pasivních součástek a z lineárních zdrojů) je možné nahradit sériovým zapojením ideálního zdroje napětí U0 a odporu Ri, přičemž U0 je napětí naprázdno na svorkách původního jednobranu a Ri je jeho odpor.

Při výpočtu náhradního vnitřního odporu Ri se nahradí všechny zdroje elektrické energie obsažené ve zjednodušované části obvodu jejich vlastními vnitřními odpory, což znamená, že všechny ideální zdroje napětí se nahradí zkratem a ideální zdroje proudu se nahradí rozpojenými svorkami.

Použití Théveninovy věty je nejlepší ukázat na jednoduchém obvodu (obr. 1) a jeho náhradním zapojení (obr. 2):

Obr. 1: Zapojení obvodu pro řešení pomocí Théveninovy věty

Obr. 2: Zapojení náhradního obvodu podle Théveninovy věty

Stanovení napětí naprázdno na výstupních svorkách 2 – 2´ (zátěž Rz je odpojena, obr. 3).

Obr. 3: Zapojení pro stanovení napětí naprázdno podle Théveninovy věty

U_{20}= R_{2}\frac{U_{1}}{R_{1}+R_{2}}

Po dosazení

U_{20}= 20\frac{12}{15+20}= 6,86V

Výpočet vnitřního odporu náhradního obvodu (ideální zdroj napětí U1 se na nahradí zkratem, obr. 4).

Obr. 4: Zapojení pro stanovení vnitřního odporu podle Théveninovy věty

R_{i}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}+R_{3}

Po dosazení

R_{i}\frac{15\cdot 20}{15+20}+5= 13,57\Omega

Parametry náhradního obvodu a jeho zapojení (obr. 5).

U_{20}= 6,86V R_{i}= 13,57\Omega

Obr. 5: Zapojení náhradního obvodu podle Théveninovy věty s vypočítanými hodnotami

Théveninova věta se dále používá při řešení zatížených odporových děličů napětí, kdy úkolem je stanovit hodnoty odporů děliče tak, aby dělič měl minimální vlastní spotřebu (tzn., že dělič se skládá z rezistorů s co největší odporovou hodnotou, ale přitom změna výstupního napětí je v souladu se změnou zatěžovacího proudu).

Příklad

Navrhněte odporový dělič s minimální vlastní spotřebou, na jehož výstupu bude při odběru proudu I2 = 100 mA napětí U2 = 12 V. Zvýší-li se odběr proudu na dvojnásobek, smí výstupní napětí klesnout nejvýše na 10 V. Vstupní napětí U1 = 35 V. Vypočítejte také proud procházející děličem naprázdno I0 (obr. 6).

Obr. 6: Zapojení zatíženého děliče napětí

Stanovení vnitřního odporu náhradního obvodu (podle Théveninovy věty)

R_{i}\frac{R_{1}R_{2}}{R_{1}+R_{2}}= -\frac{\Delta U_{2}}{\Delta I_{2}}= -\frac{U_{2}-U_{2}^{'}}{I_{2}-I_{2}^{'}}

I_{2}^{'}= 2I_{2}= 2\cdot 100= 200 mA = 0.2 A

\Delta U_{2}= U_{2}-U_{2}^{'}= 12-10= 2 V

\Delta I_{2}= I_{2}-I_{2}^{'}= 0,1-0,2= -0,1 A

R_{i}= \frac{R_{1}R_{2}}{R_{1}+R_{2}}= -\frac{\Delta U_{2}}{\Delta I_{2}}=-\frac{2}{0,1}=20 \Omega

Výstupní napětí naprázdno je možné stanovit ze vztahu

U_{2}= U_{20}-R_{i}I_{2}\Rightarrow U_{20}=U_{2}+R_{i}I_{2}

U_{20}=12+20\cdot 0,1=14 V

Ze vztahu pro vnitřní odpor také vyplývá

R_{i}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}\Rightarrow \frac{R_{i}}{R_{1}}=\frac{R_{2}}{R_{1}+R_{2}}

Výstupní napětí děliče naprázdno (bez zatížení)

U_{20}=R_{2}\frac{U_{1}}{R_{1}+R_{2}}\Rightarrow \frac{U_{20}}{U_{1}}=\frac{R_{2}}{R_{1}+R_{2}}

Porovnáním dvou přecházejících vztahů se získá rovnice

\frac{U_{20}}{U_{1}}=\frac{R_{i}}{R_{1}}\Rightarrow R_{1}=R_{i}\frac{U_{1}}{U_{20}}=20\frac{35}{14}=50 \Omega

Druhý odpor děliče se určí ze vztahu pro vnitřní odpor

R_{i}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}\Rightarrow R_{2}=\frac{R_{i}R_{1}}{R_{1}-R_{i}}=\frac{20\cdot 50}{50-20}=33,33 \Omega

Proud procházející děličem naprázdno

I_{0}=\frac{U_{1}}{R_{1}+R_{2}}=\frac{35}{50+33,33}=0,42 A

Kontrola – výpočet napětí naprázdno

U_{20}=R_{2}\frac{U_{1}}{R_{1}+R_{2}}=33,33\frac{35}{50+33,33}=14 V

Zdroje
  • KOUTNÝ, Jaroslav a Ivo VLK. Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009

Obrázky

  • Obr. 1: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení obvodu pro řešení pomocí Théveninovy věty, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009
  • Obr. 2: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení náhradního obvodu podle Théveninovy věty, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009
  • Obr. 3: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení pro stanovení napětí naprázdno podle Théveninovy věty, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009
  • Obr. 4: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení pro stanovení vnitřního odporu podle Théveninovy věty, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009
  • Obr. 5: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení náhradního obvodu podle Théveninovy věty s vypočítanými hodnotami, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009
  • Obr. 6: KOUTNÝ, Jaroslav a Ivo VLK. Zapojení zatíženého děliče napětí, Elektronika I učebnice.  VYTVOŘENO V RÁMCI PROJEKTU: DIGITÁLNÍ ŠKOLA: ICT VE VÝUCE TECHNICKÝCH PŘEDMĚTŮ, REG. Č. CZ.1.07/1.1.04/01.0137, Vyšší odborná škola a Střední průmyslová škola elektrotechnická, Olomouc 2009